ISSN 2658 — 7505
Brimyck Nel, 2019
DIIeKTPOHHBIA HAYYIHBIN XypHAT « BeCTHUK MOJI0nEXHOM Hayku Poccumy

KOHBEPTEP BXOJHbIX BbIXO/HbIX TAHHBIX JIJIA
MATEMATHYECKOI'O MOAYJIA SKCIIEPTHOU CUCTEMbI

Baprosckuii C.A. kharitonov.simon@yandex.ru
HOxwHb1i1 henepanbHblil yHEBEepeuTeT MHCTUTYT KOMIIBIOTEPHBIX TEXHOJIOTHH U HH(POPMALIMOHHON
oezonacuaoctu (MKTHUD), . Taranpor.

CoBpeMeHHbIC HHTEIUICKTYalbHbBIC CUCTEMbI, B TOM YUCIIC SKCIIEPTHBIC CUCTEMBI, YaCTO UMEIOT
B CBOEM COCTaBE€ pa3Hble POTrPaMMHbBIC MOJYIIH JUTS PEIICHUs TIOCTABICHHBIX 3a7a4. JInHaMudeckuit
XapakTep U M3MCHUYUBOCTDH JIMHEHKHU MPOIYKTOB MOJIYJICH MOPOXAACT MPOOIeMy aJanTalliid HOBBIX
CTPYKTYP BXOJHBIX/BBIXOJHBIX JAHHBIX MOCIE UX MOJKIIOYCHUs. Bo3HUKaeT MOTpEeOHOCTH Mpeodpaso-
BaHUS BXOJTHBIX/BBIXOIHBIX (haiiIoB B (haillibl C ONpeNeIeHHBIM BUAOM U CTPYKTYpOH, TpeOyemble CH-
CTEMOW W/ APYTUMH TOJKIFOUYCHHBIME MOy IsiMu. Hare ucciegoBanue cocpeioTOYCHO Ha pellie-
HUY TIPOOJIEMbI aBTOMATH3AIMH ITOAKIFOUEHUS TPOrPAaMMHBIX MOJYJICH M BBIUHUCIIUTEIBHBIX aJTOPUT-
MOB. MBI mipe/iiiaraeM TEXHOJIOTHIO YITPABICHHST BXOJHBIMU/BBIXOTHBIMU JAHHBIMH B BUJIC MATPHIL pa3-
HBIX TIPOTPAMMHBIX MOJYJICH M BBIYHCIUTEIBHBIX allTOPUTMOB, OOBCTHHEHHBIX B SIAMHBIA KJIACTED, C
WHCTPYMEHTOM H3BJICUCHUS, PACTIO3HABAHUS M TIPe0oOpa3oBaHus 3TUX CTPYKTYp AaHHBIX. [Ipemmarae-
MOE pelIeHUe Mpoliecca paclo3HaBaHUsI MATPUYHBIX JTAHHBIX OCYIIECTBISICTCS HA YpoBHE (haiimoBoi
CHUCTEMBI M OCHOBAHO Ha BBHIPAOOTKE MPAaBHJ PACIIO3HABAHUS C UCIOJIL30BAHUEM 00PA3IOB CTPYKTYP
JaHHBIX.

INPUT OUTPUT DATA CONVERTER FOR THE MATH ENGINE IN AN
EXPERT SYSTEM
Barkovskii. S.A.

Southern Federal University Institute of Computer Technologies and Information Security (ICTIS),
Taganrog

Modern intelligent systems, including expert systems (ES), often contain various computational
modules. The dynamic nature of applications and variability of the product line of modules generates
the compatibility problem of formats, types, and structures of input / output data. In this case, there is a
need to transform the input / output files into files with a certain type and structure required by the
system and / or other plugged-in computational modules. Our research is focused on solving the prob-
lem of automating plugging-in computational modules. We propose a control tool of input / output data
of various computational modules united in a single cluster, with an engine for semi-automated extrac-
tion, recognition and transformation of these data structures. We present the main phase of data post-
processing — recognition, to be used in applications that require the input / output data in matrix form.
The proposed solution of matrix data recognition is implemented at the level of the file system and is
based on the development of generation rules using samples of data structures.

Introduction

We propose a simple and inexpensive mechanism for semi-automatic control of com-
putational algorithms with heterogeneous input / output data structures. These data struc-
tures are matrices represented in different forms (semi-structured and unstructured data,
arrays, unnamed lists, etc.). The proposed mechanism is geared towards data recognition
and transformation methods for these data structures. Our methods are based on the
generation of recognition and transformation rules from the data structure sample. Con-
trol is performed at the physical level of file system. The control process does not require
special skills of the end-user. There is no need of end user’s intervention into control
process, except for the final approval of recognized data.

Related work

The need to develop an automatic engine to control external structured, semi-structured
and unstructured data from various sources for business analytics is noted in [1]. Nath
et al. offered the Semantic Extract-Transform-Load (SETL) engine for data semantic

ISSN 2658 — 7505
Brimyck Nel, 2019
DIIeKTPOHHBIA HAYYIHBIN XypHAT « BeCTHUK MOJI0nEXHOM Hayku Poccumy

transformation based on the combination of Semantic Web and Data Warehouse tech-
nologies. Semantic Web provides data in Data Warehouse in XML, XML Schema, RDF,
RDF Schema, OWL, CSV and several other formats. The extraction of the correspond-
ing data from several heterogeneous data sources is performed through the extraction
function using the RZRML mapping language. The definition of customized mappings
from relational data into the Resource Description Framework is performed by the user.
The authors in [2] proposed the visual dataflow programming language VisualTPL for
generating report understandable to end-users. The basic idea is in the top-down decom-
position; when large and complex structured content is divided into simpler layouts to
arrange the content in a certain way. The authors used special extraction functions based
on canonical tabular data. The engine they offer cannot be used for raw data recognition.
Visual TPL includes programming techniques, therefore working with VisualTPL can
be difficult to users not familiar with them.

The authors in [3] developed the TabbyXL console application to bring the tables to
their canonical relational form. Their method is based on recognition of tagged docu-
ments in such formats as Excel, Word or HTML, functional and structural analysis of
the logical structure of the table and its further transformation. Cells are defined as a set
of specific attributes, such as Location, Style, Content, and Annotation. The method
includes the modification of cells in the process of canonicalization. This type of modi-
fication can incorrectly change the contents of the cells in the tables, which may lead to
incorrect interpretation of the data. For other data structures, data need to be reconfig-
ured into a canonical table format.

Methods

In this section, we show the data post-processing to the document contained the matrix

at the file system level. The program is written in C #, for the Windows; the software platform
Is .NET Framework. In this realization of the program, it is assumed that the matrices can be
written in three different types: (i) asann X n table, where n is the dimension of the matrix;
(i1) as a single line of numbers that are elements of the matrix, including zero ones; (iii) as a
table with three columns in which the row number, the column number and the numerical
value of the nonzero element of the matrix are set. Our recognition process is brought into
play by “input-recognizer.exe” manually or from the wrapper-program session. The diagram
of the program components is shown in Figure 1.

(assembly) input-recognizer.exe

(class) FileManag: { (namespace) input-recognizer I

(class) InputMatrixParser (class)
ColumnMatrixHelper

{method) (method)
ParseLineMatrix ParseColumnhatrix

{method)
ParseSquareMatrix] (class) LineMatrixHelper

X

2 ¥
(class) FullMatrixData (class) SquareMatrixHelper

(method) (method)

(field) startLine] [FmdNumherSeparamrs] [GetMatrl Data]

(method) {method)
SelectPopularSeparator GetDelimiter

[
[(field) delimiter]
[

(method)
GetStartLine

(field) separator [(method) MatrixToJson] [

(field) matrixData
(field) matrixJson

Fig. 1. Deployment diagram for the Input-Recognizer

ISSN 2658 — 7505
Brimyck Nel, 2019
DIIeKTPOHHBIA HAYYIHBIN XypHAT « BeCTHUK MOJI0nEXHOM Hayku Poccumy

The program takes the document with a sample of input data and notation (if any). The
document and notation can be supplied to the program: (i) directly by the user through
the command prompt of the program and (ii) automatically from the controlling wrap-
per-program in case of using the Input-Recognizer as a library.
Input-Recognizer contains six classes:
1) FileManager —downloads and writes the files.
2) InputMatrixParser — initializes matrix recognition.
3) ColumnMatrixHelper —recognizes the 3rd type matrix.
4) LineMatrixHelper — recognizes the 2nd type matrix.
5) SquareMatrixHelper — recognizes the 1st type matrix.
6) FullMatrixData — configures the output data.
The InputMatrixParser class includes three methods: ParseSquareMatrix,
ParselLineMatrix, ParseColumnMatrix. These methods allow recognition for
matrices written in three types. Method ParseSquareMatrix (inputMatrix,
fileName) takes two arguments: (1) the text of the input data from the file and (2) the
name of this file. Each tool of the InputMatrixParser class has six main functions:
1) FindNumberSeparators (inputMatrix) —identifies decimal separator types.
2) SelectPopularSeparator (separators) — searches and selects the pre-
dominant type of decimal separator (creation of the 1st generation rule “Separator”).
3) GetDelimiter (separator, inputMatrix) —searchesand selects the pre-
vailing matrix delimiter (creation of the 2nd generation rule “Delimiter”).
4) GetMatrixData (inputMatrix, delimiter) —creates the listof matrix cells.
5) GetStartLine (matrixData, delimiter, inputMatrix) -
searches the initial line of the matrix entry in the document (creation of the 3rd
generation rule “StartDrawMatrixAtLine”).
6) MatrixToJson (matrixData, fileName) — rules-based transfor-
mation of the recognized matrix into json-format.
After the completion of all the functions above, we obtain a set of generation rules and
the recognized matrix in json-format. We determined that each matrix has the following
mandatory attributes, which must be identified in order to recognize the matrix image
correctly: (1) Decimal separator — Separator; (2) Matrix cell delimiter — Delim-
iter. (3) The initial line of the matrix entry in the document— StartDrawMatrix-
AtLine. (4) Notation with the command description for getting the values of special
cells (if any).
Consider the recognition process using the example of the ParseSquareMatrix tool
to recognize the input data file from the Fortran program for computing the influence
nodes. The input matrix (inputMatrix) of 1sttype is shown in Figure 2.
During the recognition process, the following tasks must be solved:
1) Remove the “noise” and recognize matrix elements.
2) Recognize the elements of the matrix that have different decimal separators, and the
elements that do not have decimal separators.
3) Create the generation rules regarding mandatory attributes (Separator, Delim-
iter, StartDrawMatrixAtLine).

ISSN 2658 — 7505
Brimyck Nel, 2019
DIIeKTPOHHBIA HAYYIHBIN XypHAT « BeCTHUK MOJI0nEXHOM Hayku Poccumy

| examplet — BnokHot - O X
@aiin [paeka ®@opmar Bua Crnpaeka

Test Matrix: "
8

-3.6 8.1 ©.06 8.5 8.2 8.8 -8.1 1.0
e.e 1. 8.8 8.3 0.2 0.0 €.e 0.e
e.e 1. 8.8 8.3 0.2 0.0 €.e 0.e
e.e 8.2 8.1 8.3 0.3 @.e .1 e.e
8.8 .6 -8.1 -1.6 1.0 8.1 8.1 8.1
8.8 0.6 ©.2 0.0 0.8 0.8 8.5 -0.1
8.8 8.2 -8.1 1.8 ©.e 0.8 0. 8.0

8. 8.6 .06 -1 8.3 1 B©8,0 -
J//Author comments///
LN v

Fig. 2. Primary data of first type matrix

4) Recognize the author's notation (if any), and add to the existing rules the author’s
additional rules necessary to generate an input file to be transferred to another math
algorithm.

5) Transform the recognized matrix into json-format for further work with the matrix
data inside the program.

As a result of the work of the program, we will have:

1. Generation rules:

(@) The 1st rule: Separator: ™.” —decimal separator.

(b) The 2nd rule: Delimiter: 7 —the delimiter of the matrix cells, equal to two
spaces in this case.

(c) The 3rd rule: StartDrawMatrixLine: “2” — the number of the line from
which filling of the matrix starts (the count starts from zero).

(d) The 4th rule: NotationRules: “E[0, 0] = n”—an additional rule to write a
mandatory elements gotten from notation.

2. JSON-matrix having the following view:

[{

“name” : “example.txt”,

“n” : “8”,

“connections” : [{“from” : 0, “to” : 0, “walue” : -3.0},
{0

H]

When a set of generation rules is created user can submit the raw data file for transfor-
mation to the required form for the math algorithm. The conversion of the user input
data into the input data of the math module is shown in Figure 3.

Conclusion

We developed a prototype of the proposed solution for matrix recognition, a console
application “input-recognizer”, which can be used either separately by manual controls
or as a module in other programs as class library. Our solution is as follows: (i) Recog-
nition of the output data at the physical level; (ii) Generation of rules based on pattern
recognition of data structures in the input data file; (iii) The recognition process does
not require end-user intervention.

ISSN 2658 — 7505
Brimyck Nel, 2019

- H
m DIIeKTPOHHBIA HAYYIHBIN XypHAT « BeCTHUK MOJI0nEXHOM Hayku Poccumy

Input data

Data parser:

Input recognizer

Data generator:
Input converter

[
cooo |
\
oo ®
-

oo 0 ®
[0}

® w
[e s B v

name : “a_matrix.txt”,

| “connectlons" :
[{“from” : O,
| ntos! . 0
“value” : 0.3},
| {. },
|]
|
| StartDrawMatrixAtLine = 2
Separator- "
| Delimiter =
Type = "square"
| NotationRules:
1:

| el: "0;0"

f:"n"
v: "NULL"

5]
@
s

R
o
g B
oo

P

olololo
o

o

[
o @ e W
|
ER-E-N-
RSN -N-]
R-E-N-]
ER-E-N-]
EREE-N-
@ ® o

Fig. 3. Conversion of the user input data into the input data of the math module

References

1. Nath, R., Hose, K., Pedersen, T., & Romero, O.: SETL: A programmable semantic extract-transform-

load framework for semantic data warehouses.

10.1016/j.is.2017.01.005.

Information Systems, 68, 17-43 (2017). doi:

2. Chen, W.-K., & P.-Y., T.: VisualTPL: A visual dataflow language for report data transformation.
Journal of Visual Languages and Computing, 25, 210-226 (2014). doi: 10.1016/j.jvlc.2013.11.003.

3. Shigarov, A., & Mikhailov, A.: Rule-based spreadsheet data transformation from arbitrary to rela-
tional tables. Information Systems, 71, 123-136 (2017). doi: 10.1016/j.is.2017.08.004.

4. Tselykh, A., Tselykh, L., Vasilev, V., & Barkovskii, S.: Expert system with extended knowledge
acquisition module for decision making support. Advances in Intelligent Systems and Computing,
680(2), 21-31 (2017). doi: 10.1007/978-3-319-68324-9.

